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There exist nine types of Bianchi cosmologies classified according to the 
structure constants of the corresponding Lie groups. Each of these types gives 
rise to a particular form of the line element, the Friedmann universe corre- 
sponding to the simplest type I. It is also known that there exists a simple 
correspondence (transformation) between the Robertson-Walker line element 
and the conformal line clement but restricting the arbitrary function of that line 
clement. This suggests that a classification of conformal flat line elements 
according to their parameters should yield a classification similar to that of 
Bianehi. The conformal group has 15 parameters, corresponding to the pure 
conformal group, Lorentz group, translation, and dilation. A classification of 
the line clement according to these has been carried out, singly and combining 
several of them. It has been found that the Friedmann universe is a subclass, as 
expected, with other eosmologies resulting as wider subclasses. Comparison 
with the Bianehi classification is also made. 

1. I N T R O D U C T I O N  

T h e  c l a s s i f i ca t ion  o f  g e n e r a l  spaces  V n u n d e r  a c o n t i n u o u s  g r o u p  of  

t r a n s f o r m a t i o n s  G r was  f irs t  c a r r i e d  o u t  b y  B i a n c h i  (1897). T h e  L i e  g r o u p  

G, is c h a r a c t e r i z e d  b y  r p a r a m e t e r s  a n d  d e f i n e d  b y  the  i n f i n i t e s i m a l  

t r a n s f o r m a t i o n s  (cf. E i s enha r t ,  1935) 

X.F=~,,~ Ox,~i (1.1) 

sa t i s fy ing  the  c o n d i t i o n s  

( X~,X~) F--- C ~ X x  F (1.2) 
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372 Tauber 

where CX~ = - C~ are the structure constants obeying the Jacobi identities 

C~#C~+C~,C~+C:,,C~=O (a,fl, X,/~,v = 1,2 . . . . .  r) 

For the fundamental form 

~b = &,~dx ~'dx ~ 

to be the same function of the new coordinates x ~ under the infinitesimal 
transformation it is necessary that Killing's equations (cf. Eisenhart, 1964) 

r 1 6 2  (1.3) 

be satisfied. It is the solution of these equations that was studied by 
Bianchi and gave rise to the well-known nine Bianchi types (Taub, 1951). 
Of particular interest is type I, which yields a constant curvature in the 
underlying 3-space 

do2= gijdXidX j 

as it forms the basis of the Friedmann universe 

ds 2= dT 2 -  R2( T)do 2 (1.4) 

Some time ago Infeld and Schild (1945) derived the form of the line 
element for an isotropic homogeneous expanding universe using conform- 
ally flat coordinates. Starting with a line dement conformal to a Minkow- 
ski space 

ds 2= Fe~,dx~dx "= F( dt 2 -  dx 2 -  dy 2 -  dz 2) (1.5) 

they showed that the limitations of homogeneity and isotropy limited the 
form the function F obtained from the appropriate solution of Killing's 
equation. As a matter of fact, the three permissible forms of F(r, t), 

F=(1 - s2 /4 ) -2 f [  t / ( 1 - s2 /4 ) ]  (1.6a) 

F-- f (  t ) (1.6b) 

F = ( I +  sZ/4)-2f[ t/(1 + s2/4)] (1.6c) 

o r  

F= f(  s ) (1.6c') 
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where s 2-- t 2 - r 2 and f an arbitrary function of its argument turn out to be 
equivalent to those of a Friedmann universe corresponding to k-- 1,0, - 1 ,  
as can be verified by carrying out appropriate transformations (Infeld and 
Schild, 1945). Of particular interest to us is (1.6c') for the open universe of 
a Lobachewski space (Wess, 1960), where F is only a function of 

S2--.~ epXPX ~' 

characteristic of the Poincar6 (Lorentz) group. 
Thus there exists a one-to-one correspondence between the Bianchi 

type I and the particular form of the conformally flat line element of 
Infeld and Schild. This suggests that it might be of interest to find general 
solutions of Killing's equations corresponding to a conformally flat line 
element of the form (1.5), but dropping the additional restrictions of 
isotropy and homogeneity. 

In Section 2 of this paper a solution of these equations have been 
found together with the limitation on the line element, i.e., the function F. 
It is not surprising that these are the ones corresponding to the conformal 
group of transformations (Wess, 1960). This group is characterized by 15 
parameters and its infinitesimal transformations can be thought to be 
made up of the following: (a) proper conformal transformations, 

x~'----- x~ + a~'s2-2x~(aax ~) where s2=ev~xVx ~ 

(b) Lorentz rotations, 

x~'=x~+b~ae#~x ~ with b~a -- - b ~  

(c) dilations or scale transformations, 

x t~ '_~  X f l  + C X  t~ 

(d) translations, 

x lX" --_ x l~ ..l_ e I~ 

The group is isomorphic to SO(4,2) and the commutation relations 
between the generators reciprocal to the conformal group 

C ~' a~, M ~ b ~ ,  S c, PJ' e~, 
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are 

( C " , C ~ ) = 0  

( M ~ , M  x~ = eSOM~X + e~XMp~ _ e ~ M  ~, _ e~OM ~ 

(CX,M ~)  = eX~C" _ eX~C~ 

(cX.s)=o.  

(P~,P~)-- 0, ( C ~ ' , P ' ) = 2 ( M ~ " - e P ~ S )  

( S , P ~ ) = P  ", (S ,  M W ) = O  

From these the structure constants can easily be deduced and the 
solutions classified. In Section 3 various combinations are considered and 
the form of the function F, defining the line element, obtained in these 
cases. Finally, in Section 4 it is shown how under suitable transformations 
these solutions can be brought into commonly used forms, of which (1.4) is 
a special case. 

2. KILLING'S EQUATION 

For a conformal line element of the form (Tauber, 1967) 

ds 2= ere,~dx~dx ~ (2.1) 

KiUing's equation (1.3) becomes 

e~x~ x ,~ + e~x~x, ~ + e ~ x , x  = 0  (2.2) 

which can be written more conveniently as 

~,~ + ~t~,- -- - e-oX F (2.2a) 

by setting 

and introducing the Killing operator X defined by 

Xffi~x0x 

Depending on whether at--fl or ctv~fl we can now divide (2.2a) into two 
sets. If a ~ f l  we obtain 

+ =0  (2.3a) 
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while for ct = fl we have 

~e~XF 

from which one deduces that 

with 
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(no summation) (2.3b) 

~1,1 ~"~ ~2,2 ~--'~3,3 = -- ~4,4"~ ~ (2.4) 

~r=2r (2.4a) 

Altogether we have a system of ten equations, nine of which determine the 
Killing vectors, while the last provides a limitation on the function. 

In order to solve (2.2a) consider first the set (2.3a). Differentiating 
with respect to x ~' (3 ,~av~f l )  we find 

~ , ~  --- - ~ , ~  

Similarly, from a set with fl and 3' interchanged we obtain 

~ , ~  = - ~r,~ 

and hence 

On the other hand, it follows from (2.2a) that 

These two sets can only be consistent, provided that 

~,,~p =0  (2.5) 

with similar results for other combinations of subscripts. Integrating (2.5) 
we find 

where f l ( a , 3 ' , 8 ) = f l ( x ~ , x V ,  x8 ) is an arbitrary function of these variables 
and 8 ~3' ~=fl ~=a. Interchanging fl and 8 and using the same considerations 
leads to 
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Hence 
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Similarly, we obtain 

However, 

which yields 

This enables us to write 

F I = OK/O x v 

and ~r itself 

Integrating (2.5a) with respect to x ~ then gives 

~,-- F(a,7)  + G(B,~/,8) 

where F(a,7) and G(fl,  y ,o)  are arbitrary functions of their arguments. 
Differentiating the last equation with respect to x r yields 

~,# --- G,o 

On the other hand, in analogy with (2.5a) we have 

~,a = g( B, ~') (2.58) 

Thus G(fl,'/,8) must be of the form 

G=  F 2 ( ~ , v ) +  F3(v,~ ~) 

~ ,  = F , ( a ,  7) +/72( ~, 7) + F3(~, 7) 

--- H,( fl, a) +//2(7,  a) + H3(6, a) 

= 

FI, a -- _ 1-I2, 7 

H 2 = - ~ K / O x  ~' 

This can be done for each pair of indices, resulting finally in the following 

(2.6a) 

(2.6b) 

~,~ =f(a,~,) (2.5a) 
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set of equations 

41 = 01 [A(1,2) + B(1,3) + C(1,4) ] (2.7a) 

42= 02 [ - A (1,2) + D(2, 3) + E(2, 4) ] (2.7b) 

43 = 03 [ - B(1,3) - D(2, 3) + F(3, 4)] (2.7c) 

44 = 04 [ -- C(1 ,4)  - E(2, 4) - F(3, 4) ] (2.7d) 

where A (1, 2) = A (x 1, x 2) etc. as solutions of (II.3a). 
We now turn to the set (II.3b). Differentiating, for example, 

41,1 =42,2 

with respect to x 1 and using (2.3a) we find 

~1,11 = 42,21 = 42,12 = 41,22 

Substituting (2.7a) we find 

01(0101[A(1,2) + B(1,3) + C(1,4)] + 0202A(1,2)} = 0  

from which we conclude, for example, that (003B(1,3) is independent  of 
x 3. In a similar fashion, using 

42,23=42,33 = -- ~3,22 

we find that (03)3B(1,3) is independent  of x 1. Hence we can write 

s (1 ,  3) = So(X 3) + B , lx  Ix 3 + 2 

+ s2,(x')2x3 + S=(xl)2(x3)2 + S3(x 1) (2.8) 

where B o. ( i , j =  1,2) are constants and Bo, B 3 arbitrary functions of their 
arguments. In the same way analogous relations for the other functions 
A(1,2), C(1,4), etc. are obtained. Substituting these into (2.7) yields 

41 ----fl (x  1) + A n  x 2 + B11 x 3 ..1_ C11X4 + .4 12(X2) 2 .at. B12(X3) 2 .1. C12(x4) 2 

+ 2x1[ A21 X2 -at- B2I X3 -I- C21x' -at- a22(x2) 2 -at- B22(X3) 2 d- C22(X 4) 2 ] 

42 =f2(x2) - - A l l  X 1 "t"/)11 x3 "[- E11x4--A21(X1) 2"t" D12(x') 2 + E12(x4) 2 

+ 2x2[ - AI2 X1 4- D21 X3 4 - E 2 1 x 4 - A 2 2 ( x 4 )  2 -.I- D22(x2) 2 -.1- F22(x4) 2 ] 

g3 ~'~k(X3) - B11Xl - e l  1 X2 q'- F11 X4 - B21 (x !)2 _ D2 ' (x2)2 + Fl2(X4)2 

+ 2 x 3 [ -  B12 x l -  D12 X2 at- F21 x 4 -  B22(x2) 2 + F22(x4) 2 ] (2.9) 
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~4 =f4(X4) -- Cll x l -  El l  X 2 -  Fl l  x 3 -  C21(x1) 2 -  E21(x2) 2 -  F21(x3) 2 

+ 2 X 4 [ -  C12 x l  - El2 x 2 -  F12 x 3 -  C22 (x l )  2 -  E22 (x2) 2-/722 (X3) 2 ] 

If  we n o w  ca lcu la te  ~-,~ a n d  use  (2.3b) d i rec t ly  we  f i nd  tha t  

A22-- B22 = C22 = D22 = E22= F22=0  

as wel l  as 

B12 = -- C I 2 ~ A I 2  ~ - a 1 

D12 = _ E12 = _ A21 = a 2 

D21 = F12 = B21 = - a s 

E21 = F21 = C21 = -- a 4 

while  the  f u n c t i o n s  f~ m u s t  be  of  the  f o r m  

f l  = -- a l (Xl)  2 -  cxl-- el  

f2 = - a2(x2) 2 -  cx2 - e2 

f3 = - as (x3)  z -  cx3 - e3 

f4 = - a4(x4) 2 - e x 4 -  e4 

where  a s, e ~ ( # =  1-4) ,  a n d  c a re  cons t an t s .  
If  we n o w  d e n o t e  the  r e m a i n i n g  coeff ic ients  A n , B  n . . . . .  F n b y  

A l l =  b21, B l l =  bsl, C l l  "~ b41, 

D n = b32 , E n  ~- b42 , F n  = b4a 

a n d  i n t r o d u c e  the  i n v a r i a n t  

= p = (x')  2 -  ( x l y -  ( x 2 y -  (xSy 

the  K i l l i ng  vec tor  c a n  b e  wr i t t en  as 

= 2avx"e,q~x [J - s2a~ - b~vx ~' + c e ~ x  I~ + e ~ e  ~ 

or 

~'~ = 2 a . x " x  ~ - s % ~ a a  + b ~ a x "  + c x  ~ + e ~ 

(2.10) 

(2.10a)  



Bianchi Cosmoiogies in Flat Space-Times 379 

which is exactly the form one would have expected from the conformal 
group characterized by the 15 parameters a~, b~, ( =  - b ~ ) ,  e ~, and c. The 
Killing operator X then becomes 

X=2a~x~x~O -s2ea~aaa~ +b~t~ea~x~O~ +cx~O, +e~a~ (2.11) 

Finally, inserting (2.10a) and (2.11) into (2.4a) gives 

XI" = - 4a~x ~ - 2c (2.12) 

as the limitation on the conformal line element. It is the solution of this 
equation which will give rise to the various types and which will be 
considered in the following section. 

3. OPERATOR EQUATION 

We now turn to the operator equation (2.12) whose solution de- 
termines the possible form of the line element (2.1). To classify the 
solutions it is convenient to separate the operator X into its various 
constituents by writing 

where 

4 

x =  (3.1) 
i=1 

L 1 = 2%x~xXox - s2eX~ax 0, (3. la) 

will determine the solution for the proper contact transformation, 

L 2 = bt, pea~x~O~ (3.1b) 

those for the Lorentz transformation, 

L 3 = cx '~ ,  (3.1c) 

describes the dilation, and finally 

L4 = eX Ox (3.1 d) 

gives those corresponding to translation. The types of solutions which we 
shall obtain will correspond to one or more of these operators, and thus 
provide us with a system of classification. 
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The function F can be expanded  in terms of  polynomials  of the fo rm 

r= E E . .  (3.2) 
i i i 

or more  compact ly  as 

with 

r = F(~'i,r/i,~ / . . . .  ) (3.2a) 

~ i ~  ,~ i p i ~  i ~ i  - A ~ x  , rl - A ~ x ~ x  ~, = A i ~ x ~ x / 3 x  Y 

For  simplicity's sake, we shall limit us to the first two terms only, for which 

r = r ( L n )  (3.3) 

where 

~ = A~ x" ,  *1 = A , a x  ~xa (3.3a) 

In  addit ion to these two funct ions we shall also require 

q~ = a~x ~, 0 = ex x x, s 2= e~,x~x" (3.3b) 

and list in Table I various relations and  constants  arising f rom them. 
We are now in the posi t ion to consider solutions of  (2.12) for a 

funct ion of the fo rm of (3.3). Although,  of course, it is the full conformal  
group which is of  part icular  interest, for the sake of completeness and  basis 
for  a classification we shall consider  all different combinat ions  of the 
operators occurr ing in (3.1). To  save space only the results are given, listed 
in the Appendix.  

TABLE I. Functions and relationsY 

Function ~ , ~ 0 s 

Definition ~=A~,x ~' ,q=A~,,xax ~ r ~" O=et, xa s2=e~x~x" 
Derivative ~x=Ax Tix=2Ax~x~ ~x=ax 0x=e x sx=s-lex~x ~ 
Contraction xX~'x ffi ~ xh0x = 2~/ xX~x ~ xXOx=O xXsx=s 
with x x 
Contraction ax~'x = M axOx=2B~x~ aXq~x = a2 a~x=~ aXsx=ga/s 
with a x 
Contraction ex~x=N e%x=2C~x~ eXq, x = e e~x=e 2 eXsx=O/s 
with e x 

aWhere B~, ffi aXAM, C~ = e~A~, M, N, a 2, e,  and e 2 a r e  constants. 
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Even a brief examination of these solutions indicates their general 
behavior. We note first that the conformal transformation only specifies 
the argument but not the form of the solution. On the other hand, under a 
dilation the form is also given. Thus a combination of the two will specify 
both the argument and nature of the solution. Any function of s is 
invariant under a Lorentz transformation as are other bilinear forms, but  
there is some difficulty with linear forms, such as a~x ~ which enter in the 
proper conformal transformation. In order to overcome this problem it is 
necessary to assume some relation between the coefficients b~ and A, 
involving the solution of a secular equation. In the case of pure transla- 
tions the situation is similar to that of dilation, but also there some 
assumptions about the coefficients e~, must be made. In particular if 
translations are to be combined with, say, proper conformal transforma- 
tions, this requires that either the vector e, is proportional to a,, or a null 
vector, i.e., e 2= 0, or at least orthogonal to the other vectors entering in the 
solution. Combining several of these transformations does not necessarily 
limit the allowed form or argument of the solution, as long as the 
appropriate conditions are satisfied. In some cases the extension to several 
(linear) invariants is necessary to specify the solution. For  example, for the 
complete conformal group the solution is expressed in terms of two linear 
invariants, a function of s and several constants partly determined by 
solutions of appropriate secular equations. In all cases it has been possible 
to find a solution, generally a function of s and one or more linear 
invariants with constants either arbitrary or determined by additional 
conditions. The relationship of these solutions to the usual form of the line 
element will be discussed in the next section. 

4. COMPARISON W I T H  EXPANDING UNIVERSES 

The Friedman universe (1.4) can be written in the isotropic form 

ds2=dT 2 -  G2(T) dY .dY  
1 2 l + ~ k Y  

where 

y i  = X i  / Ro 

are the dimensionless coordinates and 

R = RoG 

the radius. If k--  - 1 (open universe) the transformation 

T= T(s), Yiffi2xi/(t+s) 

(4.1) 

(4.2) 
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reduces (4.1) to (2.1) provided we choose 

dr/d~ = a ( r ) / ~  or 

with 

Tauber 

Ins = f d T /  G (4.2a) 

e r =  G 2 / s  2 (4.2b) 

Thus all solutions of the operator equation (2.12) which are functions of s 
only correspond to an open Friedman universe. In particular, if 

F = - 2 Ins 

as is the case for the special solution [(A.6i) corresponding to a Lorentz 
transformation with dilation] G will be a constant, i.e., the universe is 
static. However, different powers of s entering in e r will give expanding 
universes. 

Another useful form of the line element (1.4) is given by 

where 

d s E = d T  2 -  RE[ do 2 + $2(d8 2 + sin20d~2) ] (4.3) 

S(p)=sinp (~= 1) 

= sinlio ( k =  - 1) 

=p (k=0) 

obtained from (4.1) by the transformation 

r--- s o )  

Finally, a transformation of the time coordinate 

= f d T / R ( . T ) ,  R ( T )  = R(T)  

results in a completely isotropic form 

ds 2 = R 2 [ d.r2 _ d o 2 _  S E(d0 E + sin E Odq~ 2) ] (4.3a) 

At the same time the conformal line element (2.1) may be expressed in 
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terms of spherical polar coordinates as 

ds2= ere dt 2 -  dr 2 - r2( da 2 + sin 2 otdfl 2) ] 
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(4.4) 

The further transformation 

d T / d ~  = eO/2)r /A  4 

brings (4.5) then in a form 

or  r= f el/2rd  

ds 2 = d T  2 -  e r [ dr 2 + r2(da 2 + sin 2 adfl 2) ] (4.5a) 

which is identical to (4.3) provided we identify 

p =  r, O= a, (p= fl 

Thus we see that this case simply corresponds to a flat universe. In 
particular, if 

F-- -21n~ 

as given by (A.9c) the radius R(T) is given by 

R ( T )  = Roe - TA,/Ro 

If the function F depends on ~" and (, or on ~ and s, or even is a 
function of all three variables, it is advisible to introduce a new system of 
coordinates 

~ = A ~ x  ~ ( a =  1,2,3,4) (4.6) 

with ~ l = ~, and ~" 2 = ( o r  ~" 4_ ~ and ~" 1 = (, while the remaining coefficients 
A~ are still unspecified. If the determinant of the matrix A~ does not 
vanish, it is possible to find the inverse tranformation 

x ~= B~ '"  (4.6a) 

(4.5) ds2= er(r Aa2d~ 2 -  dr 2 -  r2( da2 + sin2 adfl2) ] 

which permits an easy comparison with (4.3). 
If F is a function of ~ only, such as in the case of the proper 

conformal transformation with translation [Appendix, part (9)] the time 
variable in (4.4) may be replaced by ~, resulting in 
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where the coefficients B~ are the cofactors of A~ divided by detlA~[. The 
conformal flat line element (2.1) then becomes 

ds 2-- ere~dx~dx ~= ere~B~B~d~d~ # = erE~d~d~  # (4.7) 

and, since some of the coefficients A f  are still arbitrary, can be brought 
into a diagonal form by demanding that 

Ea~ -- e,~pE a (no summation) 

If, at the same time, we introduce coordinates Z a defined by 

Z ~ = ~ aE,~ (no summation) 

we finally obtain 

ds 2= erea~dZ~dZ ~ (4.8) 

where F is now assumed to be a function of the Z ~. 
As an example consider the case of a proper conformal transforma- 

tion with dilation and translation for which F is given by [cf. (A.13b)] 

F =  - 2 1 n ( / ~ -  M~') 

Setting 

U= M~;-  M~= M ~ 4 -  M~ 1 

V= . ~  + M~ = M~ 4 + M~ 1 (4.9) 

the line element (4.7) becomes 

ds 2= U -  2[ K( dU 2 + dV 2) + L d U d V -  E2( d~ 2)2_ E3 (d~ 2)2] (4.10) 

where 

) K =  E4 E1 L =  + 
4/~r 2 4 M 2 ' - ~  

Upon imposing still another condition on the coefficients A~ it is possible 
to demand that L = 0 and thus diagonalizing (4.10). The time T can now be 
introduced through 

T-- K i/21n U or U= e 7~/(~:~/2) 
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So that (4.10) has the right signature K must be negative, which is achieved 
by setting 

K =  -0~ -2 

If we now also define space coordinates X, Y, and Z through 

X = V/~o, Y=(E2)1 /2~  2, Z = ( E 3 ) 1 / 2 ~  3 

the line element finally takes the form 

ds 2 = a T  2 - e2i'~ 2 + d Y  E + d Z  2) (4.10a) 

We note that we have again a flat universe, but with a radius which varies 
periodically in time. 

On the other hand, had we taken ~ as a space vector as well and set 

U =  M~ - M ~ = . , ~  ~ - M ~  2 

V = M ~ ; +  M ( = M ~ '  + M~ 2 (4.11) 

the line element (4.7) would have become 

ds2= ~ - 2 [  24(d~4)2_/~(d~2  + d~2) _ ff, d U d V -  23(d~3) 2 (4.12) 

with 

K =  1~ 2 + g 2 ] ~t M 

Demanding that L - - 0  and at the same time introducing the coordinates X, 
Y, Z, and T through 

X =  K1/2U, Y =  K1/2V,  Z =  (E3)I/2~ "3, T =  (E4)1/2~ "4 

transforms (4.12) into 

ds 2_. K (dT2  - d X 2 _  d y 2 _  dZ2)  
X 2 

(4.12a) 

In this form the solution (A.13b) does not correspond to an expanding 
universe at all, but is a particular static solution of the field equations. 

if F is a function of ~" and s, as is the case for the proper conformal 
transformation (and most of the other cases considered) it is convenient to 
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write (4.8) in the spherical symmetric form 

ds2 = er [ (dZ4)2-dZ 2 -  Z2(dO 2 + sin20d~b2) ] 

where 

Z ~ = Z sin0 cos q~ 

Z 2 =  Z s in  0 s in  t~ 

Z 3-- Zcos0  

At the same time s 2 now becomes 

S 2 = Ep~XPX ~' = E a f l ~ a ~  fl = E a f l Z ~  fl = ( Z 4 )  2 -- Z 2 

This immediately suggests the transformation 

Z4=P+Q,  Z = P - Q  

resulting in 
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(4.13) 

(4.14) 

(4.15) 

results in 

dsE=4er(cos'r +coso)-2[ d~ "z- doZ-sin2p(dOZ+sinOdep2) ] (4.17a) 

which corresponds to a closed universe of the form (4.13a), except that the 
radius R is now a function of p as well as z. Had we used instead of (4.16) 
the transformation 

P -- tanh ~r, Q -- tanh o 

1"=~r+o, p=Ir -o  (4.17) 

ds z=  e r [4  d P d Q - ( P -  Q)Z(dO2+sinOdqj2)] (4.15a) 

To get (4.15) into the form of a closed universe, such as (4.3a), we follow 
Infeld and Schild (1945) and set 

P---tan~r, Q = t a n o  (4.16) 

which after some simplification yields 

ds 2-- e r sec z 7r sec 2 o [4d~rdo - sin2(~r - o)(dO 2 + sin 20dC) ] (4.16a) 

Finally, setting 
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the final form of the line element would have been 
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ds2=4er(coshT + coshp)-2[  & Z - d p Z - s i n h 2  p(dO z + sin Odqfl) ] 

(4.17b) 

an open universe, with a radius depending on 0 and z. 
As an example, consider a function F which is a function of the 

argument 

( f 2 / s Z +  C)s -2 (4.18) 

where C is a constant, and of which (A.la) is a special case. Carrying out 
the various transformations (4.15), (4.16), and (4.17) finally gives 

sinZ~ - + C2E24(cos2 p - cosEr) 

4 E 2 ( c o s p -  cost )  z 
(4.18a) 

The exact form of the radius R and its dependence on p and ~- is 
determined on how F depends on its argument (4.18) and will be found 
only from the field equations. It should be noted that the above analysis 
works equally well, if F is a function of ~ and 7, except that now the 
coefficients A w entering in 7/have also to be taken into account. 

In the general case of the complete conformal group, where F is a 
function of ~ and ~, as well as s [cf. (A.15)] we shall at first proceed as in 
the more special case of proper conformal transformation with dilation 
and translation [cf. (A.13b)]. To avoid later complications with the signa- 
ture we shall immediately set 

U = F~ q - G (  = F~ 4 q - G~ 1 

i V =  F ~ -  G~= F~ 4 -  G~ 1 (4.19) 

which transforms the line element (4.17) into 

ds 2= er[  K(dU 2 -  dV 2) + i L d U d V -  E2(d~ 2 ) 2  E3 (d~.3)2] (4.19a) 

where again 

1 



388 Tauber 

This can again be diagonalized by subjugating the coefficients A~ to 
additional conditions and demanding that L = 0. If we now introduce new 
coordinates W, Z, 0, and ~ defined by 

W = K1/2  U 

K I / 2 v  = Zsin0cOS~ 

E21/2~ 2= Zsin0 sinq, 

E1/2~; 3 = Z c o s 0  

the line element (4.19a) becomes 

ds2--er[ d W 2 - d Z E -  Z2( dOE +sinOdep2) ] (4.19b) 

which is of the form (4.13). 
Proceeding now as before, with W taking the place of Z 4, we end up 

with a closed (or open) universe of the form (4.17b). However, this time the 
form of the function r and thus the radius R is specified. Writing (A.15) in 
the form 

er=( F~ + G-( + �89 2 + 2C)-2 (4.20) 

where the constants A and C are defined by 

I A = GM + FM, 2C = GN + FN 

and carrying out the transformations indicated by (4.15), (4.16), (4.17), and 
(4.19) transforms (4.20) into 

er -- 4 [ sin r + cos p( A + C ) + cos ~( C - A ) ] 2 (cos p + cos r ) - 2 (4.20a) 

Finally, inserting this expression into (4.1To) results in a closed universe of 
the form (4.3a) with the radius R given by 

R('r,p)= [sin~ + cosp(A + C ) + c o s r ( C - A ) ] - 1  (4.21) 

It should be noted that in the special case for which A + C--0 we obtain 
again a closed universe for which the radius R is only a function of r as in 
(4.3a). 

To complete our analysis let us consider ~ again as a space vector and 
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in analogy with (4.11) set 

V =  F~ - G-f= F~ ' - G~" 2 (4.22) 

This transforms the line element (4.7) again into a form closely related to 
(4.12a): 

ds 2 = er[ d T  2 - d X  2 -  d Y  2 - a z  2 ] (4.22a) 

with the coordinates defined by 

T =  e,~/2~ `, X =  K ' / 2 U ,  Y =  K ' / 2 V ,  Z = E~/2~ 3 

At first thought it might be advisable to introduce again spherically 
symmetric coordinates, but since F depends explicitly on X as well as on s 
this would make it a function of three variables. Instead, we find it 
advantageous to define the variables 

T =  Wcosha 

Y = Wsinh a cos/3 

Z = W s i n h a  sin/3 (4.23) 

in terms of which (4.22a) becomes 

as2=er[ dW 2-  dX 2 -  W2(aa 2 +sinh2ad/3) ] (4.23a) 

while s 2 is given by 

s2= T 2_ X 2_ y 2 _  Z 2 =  W 2 _ X  2 (4.23b) 

If we now introduce again the variables P and Q defined by 

x=P+Q,  w = P - a  (4.24) 

and follow this by transformations (4.16) and (4.17) the line element 
(4,23a) takes the form 

ds 2 -- 4er(cos p + cos ~)- 2 [ d~.2 _ do2 _ Sill 2 p(dot2 + s i n h  2 adf l  2) ] 

(4.24a) 
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This is similar to a closed universe, except that the 2-space characterized 
by the angles a and fl is not that of a sphere, but of a hyperboloid of 
revolution. Expressing again the function e r in terms of these variables, we 
finally obtain 

ds 2= [ sinT + cosp(A + C) + cosz(A - C ) ] - 2  

• [ dr z -  dp 2 -  sin 2 p(do~ 2 + sinh 2 adfl 2) ] (4.24b) 

From the above examples we may thus conclude that it is always 
possible to transform a line element corresponding to one or more ele- 
ments of the conformal group into one resembling a Friedmann universe. 
In special cases, where the function multiplying the flat line element only 
depends on ~ (or its special cases) the result will be a flat space; for any 
function of s it will be an open universe, while in the general case it will be 
a closed (or open) universe, but with a radius which also depends on one 
space coordinate. In this sense, the resulting group contains more general 
line elements than the three Friedmann universes with which we started. 

APPENDIX: SOLUTIONS OF THE OPERATOR EQUATION (2.12) 

1. Proper Con formal  Transformation 
Equation: L ,F  = - 4th 
Special solution: 

Fo= -41ns  

General solution: 

(A.1) 

where 

r--ro+Y(x) (A.la) 

X = d~ 2s - 4 _  a2s - 2 (A.la) 

2. Lorentz Transformation 
Equation: L2F = 0 
General solution: 

a) r=r(s) (A.2a) 

b) r = r ( n )  (A.2b) 
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provided that 

A,~/~ = b , ,  e ~b~B 

c) independent  of f if 

b, ,A  ~ = 0 

3. Proper Con formal and Lorentz Transformations 
Equat ion:  (L  1 + L2)F = - 4~ 
Genera l  solution: 

a) r = - 4 Ins + F(X) 

i) if b~a~=O 

X=~92S-4"1- a2s -2 (see A.la') (A.3ai) 

ii) if b . . a '=D.~ ,  which implies Ib..-e.~DI = o  and  a2=O, then 

X = COs -2 + Ds -2 

b) F = - 4 l n s +  F(~p) 

where ~k = (S" + F)s-2 ,  provided  that  

which implies M = 0. 
4. Dilation 

Equat ion:  LaF = - 2c 
Genera l  solution: 

b~A ~ = 2Fa~ 

F = p  ln~ + qlnT/ 

p + 2 q =  - 2  

where 

5. Proper Con formal Transformation with Dilation 
Equat ion:  (L  1 + L3)F -- - 4~ - 2c 
Genera l  solution: 

F =  - 4 1 n s + ~  

(a) F - -  - 2 In X 

(A.2b')  

(A.3) 

(A.3a) 

(A.3aii) 

(A.3b) 

(A.3b')  

(A.4) 

(A.4a) 

(h.5) 

(A.5a) 
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where X~-~s-2+a2c. 

(b) F = - In 2 

where 2 = (co + c /4)s - 2 + a2/2c. 

(c) F----�89 

where ~ =(~b2+pO+ q ) s - 4 + ( m r  n) s -2+  t, with p = c, 
I 2 a2/4c 2. a2/c, n = i a  , t---- 

6. Lorentz Transformation with Dilation 
Equation: (L 2 + La)F -- - 2c 
Special solution: 

provided that Av~ = bwe"abl~. 
General solution: 

(i) F = - 2 Ins 

(ii) F =  -ln~/ 

provided that 

F =(c  + E)ln ~ + 2 c l n n -  21ns 

b~,,e"~Ar = EA r 

which implies Ibm,- emE] = 0  and At, A ~' =0. 
7. Proper Conformal and Lorentz Transformation with Dilation 

Equation: (L 1 + L 2 + L3)F = - 4 0 -  2c 
Solution: 

(A.5b) 

(A.5c) 

q--c2/4,  m =  

(A.6i)  

(A.6ii) 

(A.6a) 

(A.6a') 

(a) I '=  - 4 I n s +  F (A.7a) 

(i) if bm,a~=O, L 2 does not enter, solutions given by (A.5a, b,c); (ii) if 
bm,a'= Da~, which implies Ibm,- era,D I--0 and a2=O, 

-- 2 c  c ln(e~,s-2) (A.7ai) 

(A.7aii) . =_ ln(q~s_2+ c+._.__DD)4s z 

= - �89 2 +ffq~ + ~)s-4  (A.Vaiii) 
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where i f =  c - D, ~ =  �88 - D )  2. 
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(b) F = A ln ( f~  + g)  (A.7b) 

where A = 2 c / ( E -  c), f =  s-P, g = Gs --q, p---- (C + E ) / c ,  G = �89 - E), 
q = 2 ( E -  c ) / c  and  bwA ~ = EA~, which implies Ibm - e~,E ! = 0  and  A~A ~ = 
0. 

8. Translation 
Equat ion:  L4F = 0 
Solution: 

k (~2/N-~l/c ) 

prov ided  that  eXAx~ = C~ = CA~ and k is a cons tan t  of  integration.  
9. Proper Conformal Transformation with Translation 

Equat ion:  (L 1 + L4)F = - 4 4, 
Solution: 

(a) if e x = Eax: 
special solution, 

(A.8) 

general  solution, 

Y = / =  - 2 ln(s2 + E )  

r = f + r ( x )  

(A.9a) 

(A.9a ' )  

where  X = A / ( s  2 + E )  2 = (dp 2 - a 2) + B. 
(b) if e2--0:  

general  solution, 

r =  -ln(02+ {s  ') (A.9b)  

(c) if 

r =  - 2 i n ;  

provided  that  M = N - -  0. 
10. Lorentz Transformation with Translation 

Equat ion:  (L  2 + L4)F = 0 
Solution: 

(A.9c) 

r = r(x), x = ~'- { s 2 (A.10) 
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provided that 

which implies that N = 0. 
11. Dilation and Translation 

Equation: (L 3 +/.4)F = - 2c 
Solution: 

b~A ~ = Ee~ 

Tauber 

(A.10') 

general solution, 

(A.12a) 

r = f+  ?(x) (A.12ai) 

where XffiA(ep- B ) / ( s 2  q - E ) +  K. 
(b) another solution: 

F =  - 21n(~'- 2 BsZ) (A.12b) 

provided that bwA ~= BA t, which implies Ibm,-Bern, I =0  and M =  N = 0 .  
13. Proper Conformal Transformation with Dilation and Translation 

Equation: (L 1 + L 3 + L4) r = - 2c - 4q~ 
Solution: 

(a) if e x = Ea x, 

(b) if 

F - - -  21n[4,+ a2 (A. 13a) 

F =  - 2h(~ t~ ' -  M ( )  (A.13b) 

where [ = Aax ~, ~ = A~x ~, .M= aX(x,/V= eX(x. 

F = f =  - 21n(s 2 + E)  

12. Proper Conformal and Lorentz Transformations with Translation 
Equation: (L, + L2+ L4)F = - 4~ 

(a) if ex=F, ax and bwa~=B%,  which implies Ib~=-B~l=0 and 
a2-----0. 
special solution, 

F =  - 21n(e~'+ N)  (A.11) 
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condition: 

MN = MN 

special case: ~'=~, ( = 0 ,  M=a 2, M=N=e,  
then 

E 2 ~ a2e 2 

14. Lorentz Transformation with Dilation and Translation 
Equation: (L 2 + L 3 + Lg)F = - 2c 
Solution: 

F = -  c2_eB ln[ ~(c-  B)+ N] 

(A.13b') 

/V.-~ e 2 

(A.13b') 

(A.14) 

B - - 2 G / V +  2N, B - - - 2 M - 2 F M  (A. 15') 

which requires that 

4( MN + M N) = BJff + 2(/~B - N/~) (A. 15") 

Special case: if ~=~, ( = 0 ,  then h=(Ge+Fa2)sZ+(Ge2+Fe) and B 
2 2 2 =--ff(Ge + Fe), B = - - ~ ( G e +  FaZ), which requires that 

B B  2 ( B  - B) -- e z - aZe 2 
-7-+ (A.15") 

Note: Capital letters, such as A, B, etc., are constants and others are 
defined in Table I. 

F= -21n(F~ + Gf + h) 

where h -- (GM+ FM)s z + (GN+ FN), F, G are constants, and 

(A.IS) 

provided that b~A ~ = BA~, which implies [b~, - e~B[--0. 
15. Complete Conformal Group 

Equation: (L 1 + L2+ L 3 +_L4)F__=_- 2e - 4 ~  
Let b~A~=BA~ and b~Af=BA~, which imply [b~,-Be~l=O and Ibm- 
Be~,l=O, where ~=A~x ~, ~=A~x ~. 
Solution: 
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